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Abstract. The Hilbert space representations of a non-commutative q-deformed Minkowski space, its mo-
menta and its Lorentz boosts are constructed. The spectrum of the diagonalizable space elements shows a
lattice-like structure with accumulation points on the light-cone.

1 Introduction

A non-commutative space-time structure emerges from
quantum group considerations.

More precisely, if we demand that space-time vari-
ables are modules or co-modules of the q-deformed Lorentz
group, then they satisfy commutation relations that make
them elements of a non-comutative space. The action of
momenta on this space is non-commuative as well. The
full structure is determined by the (co-)module property.

This algebra has been constructed in [1]. It can serve
as an explicit example of a non-commutative structure for
space-time.

This has the advantages that the q-deformed Lorentz
group plays the role of a cinematical group and thus deter-
mines many of the properties of this space and allows ex-
plicit calculations. We have explicitly constructed Hilbert
space representations of the algebra and find that the vec-
tors in the Hilbert space can be determined by measuring
the time, the three-dimensional distance, the q-deformed
angular momentum and its third component. The eigen-
values of these observables form a q-lattice with accumu-
lation points on the light-cone. In a way physics on the
light-cone is best approximated by this q-deformation. It
is an interesting result that time-like and space-like re-
gions serve as basis for irreducible representations inde-
pendently. It will be shown however in a forthcoming pa-
per [2] that these representations are linked together if
we demand that the observables are essentially selfadjoint
operators.

The paper is organized as follows. We first present
the algebra. In Chap. 2 we give explicit formulas for the
matrix elements of the elements of the algebra. This is
the main result of this work and can serve as a starting
point for further investigations. In the following chapters
we give a rather detailed guide how these results can be
obtained, first for the space-time algebra (Chap. 3), then
for the Lorentz algebra (Chap. 4).

The algebra represented that far is isomorphic to the q-
deformed Poincaré algebra. We would just have to replace
X by P to obtain the respective representations [3].

In the next chapter (Chap. 5) we enlarge the algebra by
a scaling operator and we introduce a canonical notation
for labeling the states.

Finally in Chap. 6 we construct the representations of
the momenta in the X-basis. There we learn that the full
algebra cannot be represented on the light-cone by itself.
The points on the light-cone are limiting points from the
time-like and space-like regions.

2 The algebra

The algebra derived in [1] is generated by the elements
Xa, (coordinates), P a (momenta), V ab (q-Lorentz trans-
formations), and Λ

1
2 (scaling operator). 1

The space is non-commutative:

εCB
AXBXC = (1 − q2)X0XA (2.1)

X0XC = XCX0

The momenta are subject to the same relations:

εCB
APBPC = (1 − q2)P 0PA (2.2)

P 0PC = PCP 0

The defining relations of the q-Lorentz algebra, as it acts
on coordinates and momenta, are more easily expressed in
the “Pauli”-notation:

V A0 = RA + q2SA

V 0A = −q2RA − SA (2.3)

V AB = εC
AB(RC − SC)

V 00 = 0
1 Capital letters A denote the three space indices (+, −, 3),

small letters a denote the four Minkowski indices (+, −, 3, 0).
εCBA is the q-deformed ε-tensor and gAB the Euclidean metric,
ηab the Lorentz metric. For the scalar product we write X◦Y =
gABXAY B (see also Appendix A)
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In addition, we introduce an element U that is related to
the Casimir operators of the q-Lorentz algebra:

U2 = 1 +
1
2
(q4 − 1)2(R◦R + S◦S) (2.4)

The q-Lorentz algebra2:

εCB
ARBRC =

1
1 + q2 URA

εCB
ASBSC = − 1

1 + q2 USA (2.5)

RASB = q2R̂AB
CDSCRD

URA = RAU, USA = SAU

The coordinates “transform” under the q-Lorentz trans-
formations:

RAX0 =
1
q

q4 + 1
q2 + 1

X0RA +
1
q

q2 − 1
q2 + 1

εLM
AXMRL

− q

(1 + q2)2
XAU

RAXB =
1

1 + q2

[
q(1 + q2)XARB

− 1
q
(q2 − 1)εC

ABX0RC − 1
q
(q2 − 1)gABX◦R

− 2
q
εABGεSTGXT RS − 1

q

1
1 + q2 gABX0U

+
1
q

1
1 + q2 εM

ABXMU
]

SAX0 =
1
q

q4 + 1
q2 + 1

X0SA +
1
q

q2 − 1
q2 + 1

εLM
AXMSL

− 1
q(1 + q2)2

XAU (2.6)

SAXB =
1

1 + q2

[1
q
(1 + q2)XASB

− 1
q
(q2 − 1)εC

ABX0SC + q(q2 − 1)gABX◦S

− 2
q
εABGεSTGXT SS − q

1 + q2 gABX0U

− 1
q

1
1 + q2 εM

ABXMU
]

UX0 =
1
q

q4 + 1
q2 + 1

X0U − 1
q
(q2 − 1)2X◦R

UXA =
1
q

q4 + 1
q2 + 1

XAU − q(q2 − 1)2X0RA

− 1
q
(q2 − 1)2εCB

AXBRC

The momenta have the same transformation law.
2 The R̂ matrices are also defined in Appendix A

The scaling operator acts as follows:

Λ
1
2 Xa =

1
q
XaΛ

1
2

Λ
1
2 P a = qP aΛ

1
2 (2.7)

Λ
1
2 V ab = V abΛ

1
2

Λ
1
2 U = UΛ

1
2

The relations that generalizes the Heisenberg commu-
tation relations are: 2

P aXb − q−2R̂−1
II

ab
cdX

cP d =

− i
2Λ− 1

2
{
(1 + q4)ηabU + q2(1 − q4)V ab

} (2.8)

The q-Heisenberg algebra (2.8) does not separate from
the q-Lorentz algebra for q 6= 1. The relation (2.8) tells
us how to commute Xa and P b and how to define orbital
angular momentum in terms of the space and momentum
operators. It is not possible to define V ab in terms of an
X, P ordered expression.

From orbital angular momentum we expect additional
relations – the orbital angular momentum is orthogonal
to the coordinates and momenta. These relations follows
from the defining relations of our algebra and they are:

gABXA(RB − q2SB) = 0 (2.9)

X0(SA − q2RA) − εCB
AXB(RC + SC) = 0

The same with X replaced by P . Not all representations of
the Lorentz group can be realized as angular momentum.
We expect a relation for the Casimir operators. It follows
from the algebra that:

R◦R = S◦S (2.10)

For the physical interpretation and for the representations
of this algebra the conjugation properties are very impor-
tant. They are:

X0 = X0 , XA = gABXB

P 0 = P 0 , PA = gABPB

RA = −gABSB , SA = −gABRB (2.11)

U = U

Λ1/2 = q4Λ−1/2

These conjugation relations are consistent with the alge-
bra.

Finally, we identify the three-dimensional rotations in
the algebra. They have to commute with X0 and X ◦X
Such operators have been found in [4] and they are:

LA =
q2 + 1

q2 (USA − URA + (q4 − 1)εCB
ARBSC) (2.12)

They commute with X0 and P 0 as well as with all
“scalars” in our algebra formed with the metric gAB , such
as X◦X, P ◦P , R◦R, S◦R, etc.
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To write the L algebra in a familiar way we define an
additional element:

W = U2 − q2(q4 − 1)2R◦S (2.13)

and find:

εBC
ALCLB = −W

q2 LA (2.14)

q4(q2 − 1)2L ◦ L = W 2 − 1

The SUq(2) algebra was written in this form in [5,6].
We identify the SUq(2) generators:

T+ = q2
√

1 + q2 τ1/2L+

T− = −q3
√

1 + q2 τ1/2L− (2.15)
τ3 = τ

with τ− 1
2 = W + q2(1 − q2)L3.

The T algebra is the familiar one:

1
q
T+T− − qT−T+ =

1 − τ3

q − 1
q

τ3T
+ =

1
q4 T+τ3 (2.16)

τ3T
− = q4T−τ3

Its Casimir operator is:

T2 = qT−T+ +
q

(q − 1
q )2

τ
− 1

2
3 +

1
q

1
(q − 1

q )2

(
τ

1
2
3 − q2 − 1

)
(2.17)

The conjugation properties are:

T+ =
1
q2 T−, T− = q2T+ (2.18)

τ3 = τ3

The vectors XA and PA transform as follows:

LAXB = gABX ◦ L − 1
q2 εKC

AεD
KBXCLD

− 1
q4 εC

ABXCW (2.19)

WXA = (q2 +
1
q2 − 1)XAW + (q2 − 1)2εDC

AXCLD

WX0 = X0W

Now we have all the relations that allow us to study the
representations of this algebra.

A complete set of commuting operators is X0, X ◦X,
T2 and τ3.

3 The matrix elements

In this chapter we present the matrix elements of all the
members of the algebra.

The states are labeled by the quantum numbers j, m,
n and M . The quantum numbers j and m refer to the
q-deformed angular momentum. The quantum numbers
n and M label the eigenvalues of the time X0 and the
three-dimensional radius X◦X.

There are inequivalent representations for the time-like
and space-like regions.

Space-like: s2 = t2 − r2 < 0:

M = −∞ . . .∞
n = −∞ . . .∞

j = 0 . . .∞

X0 |j, m, n, M〉 =
l0q

M

[2]
λ[n] |j, m, n, M〉 (3.1)

X◦X |j, m, n, M〉 =
l20q

2M

[2]2
{n + 1}{n − 1} |j, m, n, M〉

Time-like: s2 = t2 − r2 > 0:

M = −∞ . . .∞
n = 0 . . .∞
j = 0 . . . n

X0 |j, m, n, M〉 =
t0q

M

[2]
{n + 1} |j, m, n, M〉 (3.2)

X◦X |j, m, n, M〉 =
t20q

2Mλ2

[2]2
[n + 2][n] |j, m, n, M〉

We use the notation throughout this paper:

[a] =
qa − q−a

q − q−1 (3.3)

{a} = qa + q−a (3.4)

and

λ = q − 1
q

(3.5)

The spectrum of the operators X0 and X◦X is shown in
Fig. The parameters |t0|, l0 range from 1 to q and label
inequivalent representations. t0 can be positive (forward
cone) and negative (backward cone).

The states are orthonormal:

〈j′, m′, n′, M ′|j, m, n, M〉 = δj′,jδm′,mδn′,nδM ′,M (3.6)

The matrix elements of XA, RA, SA and PA can be ex-
pressed in terms of reduced matrix elements. The explicit
formulas are given in (4.5).
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Space-like:
Reduced matrix elements of X−:

〈j + 1, n, M‖X−‖j, n, M〉 =

l0q
M+j

√{n + j + 1}{n − j − 1}
{j + 1}

√
[2][2j + 1][2j + 3]

for j ≥ 0

〈j, n, M‖X−‖j, n, M〉 =

−q−1 l0q
M [n]λ2√

[2]{j}{j + 1} for j ≥ 1

〈j, n, M‖X−‖j + 1, n, M〉 =

−l0q
M−j−2

√{n + j + 1}{n − j − 1}
{j + 1}

√
[2][2j + 1][2j + 3]

for j ≥ 0

Reduced matrix elements of R−:

〈j + 1, n′, M‖R−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
(n′ − n)q2j−1

{j + 1}[2]
3
2 λ

√
[2j + 1][2j + 3]

·
√

{(n′ − n)(j + 1) + n′}{(n′ − n)j + n′}
{n}{n′}

for j ≥ 0

〈j, n′, M‖R−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
q−3

{j + 1}{j}[2]
3
2

·
√

{(n′ − n)j + n′}{n − (n′ − n)j}
{n}{n′}

for j ≥ 1

〈j, n′, M‖R−‖j + 1, n, M〉 =

−(δn′,n+1 + δn′,n−1)
(n′ − n)q−2j−5

{j + 1}[2]
3
2 λ

√
[2j + 1][2j + 3]

·
√

{n′ − (n′ − n)(j + 1)}{n − (n′ − n)(j + 1)}
{n}{n′}

for j ≥ 0

Reduced matrix elements of S−:

〈j + 1, n′, M‖S−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
(n′−n)q−3

{j+1}[2]
3
2 λ

√
[2j+1][2j+3]

·
√

{(n′ − n)(j + 1) + n′}{(n′ − n)j + n′}
{n}{n′}

for j ≥ 0

〈j, n′, M‖S−‖j, n, M〉 =

−(δn′,n+1 + δn′,n−1)
q−3

{j + 1}{j}[2]
3
2

·
√

{(n′ − n)j + n′}{n − (n′ − n)j}
{n}{n′}

for j ≥ 1

〈j, n′, M‖S−‖j + 1, n, M〉 =

−(δn′,n+1 + δn′,n−1)
(n′−n)q−3

{j+1}[2]
3
2 λ

√
[2j+1][2j+3]

·
√

{n′ − (n′ − n)(j + 1)}{n − (n′ − n)(j + 1)}
{n}{n′}

for j ≥ 0

Reduced matrix elements of P−:

〈j + 1, n + 1, M ′‖P−‖j, n, M〉 =

i
2(δM ′,M+1q

2+2j−n − δM ′,M−1q
2+n)

· 1
{j + 1}λl0q

M

√
[2]

[2j + 1][2j + 3]

·
√

{n + j + 2}{n + j + 1}
{n}{n + 1}

for j ≥ 0

〈j + 1, n − 1, M ′‖P−‖j, n, M〉 =

i
2(δM ′,M+1q

2+2j+n − δM ′,M−1q
2−n)

· 1
{j + 1}λl0q

M

√
[2]

[2j + 1][2j + 3]

·
√

{n − j − 2}{n − j − 1}
{n}{n − 1}

for j ≥ 0

〈j, n + 1, M ′‖P−‖j, n, M〉 =

iλ
2{j}{j + 1}

√
[2]l0qM

(δM ′,M+1q
−n + δM ′,M−1q

2+n)

·
√

{n + j + 1}{n − j}
{n}{n + 1}

for j ≥ 1
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〈j, n − 1, M ′‖P−‖j, n, M〉 =

− iλ
2{j}{j + 1}

√
[2]l0qM

(δM ′,M+1q
n + δM ′,M−1q

2−n)

·
√

{n − j − 1}{n + j}
{n}{n − 1}

for j ≥ 1

〈j, n + 1, M ′‖P−‖j + 1, n, M〉 =

− i
2(δM ′,M+1q

−2−2j−n − δM ′,M−1q
2+n)

· 1
{j + 1}λl0q

M

√
[2]

[2j + 1][2j + 3]

√
{n − j}{n − j − 1}

{n}{n + 1}
for j ≥ 0

〈j, n − 1, M ′‖P−‖j + 1, n, M〉 =

− i
2(δM ′,M+1q

−2−2j+n − δM ′,M−1q
2−n)

· 1
{j + 1}λl0q

M

√
[2]

[2j + 1][2j + 3]

√
{n + j + 1}{n + j}

{n}{n − 1}
for j ≥ 0

Matrix elements of P 0:

〈j, m, n + 1, M ′|P 0|j, m, n, M〉 =

− i
2λl0qM (δM ′,M+1q

1−n + δM ′,M−1q
3+n)

·
√

{n − j}{n + j + 1}
{n}{n + 1} for j ≥ 0

〈j, m, n − 1, M ′|P 0|j, m, n, M〉 =

i
2λl0qM (δM ′,M+1q

1+n + δM ′,M−1q
3−n)

·
√

{n − j − 1}{n + j}
{n}{n − 1} for j ≥ 0

Matrix elements of U :

〈j, m, n, M |U |j, m, n + 1, M〉 =

〈j, m, n + 1, M |U |j, m, n, M〉 =

1
[2]

√
{n − j}{n + j + 1}

{n}{n + 1} for j ≥ 0

Matrix elements of Λ:

〈j, m, n, M + 1|Λ 1
2 |j, m, n, M〉 = q2

Time-like:

Reduced matrix elements of X−:

〈j + 1, n, M‖X−‖j, n, M〉 =

t0q
M+jλ

√
[n − j][n + j + 2]

{j + 1}
√

[2][2j + 1][2j + 3]
for j ≥ 0

〈j, n, M‖X−‖j, n, M〉 =

−q−1λ
t0q

M{n + 1}√
[2]{j}{j + 1} for j ≥ 1

〈j, n, M‖X−‖j + 1, n, M〉

= −t0q
M−j−2λ

√
[n − j][n + j + 2]

{j + 1}
√

[2][2j + 1][2j + 3]
for j ≥ 0

Reduced matrix elements of R−:

〈j + 1, n′, M‖R−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
(n′ − n)q2j−1

{j + 1}[2]
3
2 λ

√
[2j + 1][2j + 3]

·
√

[(n′ − n)(j + 1) + n′ + 1][(n′ − n)j + n′ + 1]
[n + 1][n′ + 1]

for j ≥ 0

〈j, n′, M‖R−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
q−3

{j + 1}{j}[2]
3
2

·
√

[(n′ − n)j + n′ + 1][n − (n′ − n)j + 1]
[n + 1][n′ + 1]

for j ≥ 1

〈j, n′, M‖R−‖j + 1, n, M〉 =

−(δn′,n+1 + δn′,n−1)
(n′ − n)q−2j−5

{j + 1}[2]
3
2 λ

√
[2j + 1][2j + 3]

·
√

[n′ − (n′ − n)(j + 1) + 1][n − (n′ − n)(j + 1) + 1]
[n + 1][n′ + 1]

for j ≥ 0
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Reduced matrix elements of S−:

〈j + 1, n′, M‖S−‖j, n, M〉 =

(δn′,n+1 + δn′,n−1)
(n′−n)q−3

{j+1}[2]
3
2 λ

√
[2j+1][2j+3]

·
√

[(n′ − n)(j + 1) + n′ + 1][(n′ − n)j + n′ + 1]
[n + 1][n′ + 1]

for j ≥ 0

〈j, n′, M‖S−‖j, n, M〉 =

−(δn′,n+1 + δn′,n−1)
q−3

{j + 1}{j}[2]
3
2

·
√

[(n′ − n)j + n′ + 1][n − (n′ − n)j + 1]
[n + 1][n′ + 1]

for j ≥ 1

〈j, n′, M‖S−‖j + 1, n, M〉 =

−(δn′,n+1 + δn′,n−1)
(n′−n)q−3

{j+1}[2]
3
2 λ

√
[2j+1][2j+3]

·
√

[n′ − (n′ − n)(j + 1) + 1][n − (n′ − n)(j + 1) + 1]
[n + 1][n′ + 1]

for j ≥ 0

Reduced matrix elements of P−:

〈j + 1, n + 1, M ′‖P−‖j, n, M〉 =

i
2(δM ′,M+1q

1+2j−n + δM ′,M−1q
3+n)

· 1
t0q

Mλ{j + 1}
√

[2]
[2j + 1][2j + 3]

√
[n + j + 3][n + j + 2]

[n + 2][n + 1]

for j ≥ 0

〈j + 1, n − 1, M ′‖P−‖j, n, M〉 =

− i
2(δM ′,M+1q

3+2j+n + δM ′,M−1q
1−n)

· 1
t0q

Mλ{j + 1}
√

[2]
[2j + 1][2j + 3]

√
[n − j − 1][n − j]

[n][n + 1]

for j ≥ 0

〈j, n + 1, M ′‖P−‖j, n, M〉 =

iλ
2{j}{j + 1}

√
[2]t0qM

(δM ′,M+1q
−1−n − δM ′,M−1q

3+n)

·
√

[n + j + 2][n − j + 1]
[n + 2][n + 1] for j ≥ 1

〈j, n − 1, M ′‖P−‖j, n, M〉 =

iλ
2{j}{j + 1}

√
[2]t0qM

(δM ′,M+1q
1+n − δM ′,M−1q

1−n)

·
√

[n + j + 1][n − j]
[n][n + 1]

for j ≥ 1

〈j, n + 1, M ′‖P−‖j + 1, n, M〉 =

− i
2(δM ′,M+1q

−3−2j−n + δM ′,M−1q
3+n)

· 1
λ{j + 1}t0q

M

√
[2]

[2j + 1][2j + 3]

√
[n − j + 1][n − j]

[n + 2][n + 1]

for j ≥ 0

〈j, n − 1, M ′‖P−‖j + 1, n, M〉 =

i
2(δM ′,M+1q

−1−2j+n + δM ′,M−1q
1−n)

· 1
λ{j + 1}t0q

M

√
[2]

[2j + 1][2j + 3]

√
[n + j + 2][n + j + 1]

[n][n + 1]

for j ≥ 0

Matrix elements of P 0:

〈j, m, n + 1, M ′|P 0|j, m, n, M〉 =

− i
2λt0qM (δM ′,M+1q

−n − δM ′,M−1q
4+n)

·
√

[n − j + 1][n + j + 2]
[n + 1][n + 2]

for j ≥ 0

〈j, m, n − 1, M ′|P 0|j, m, n, M〉 =

− i
2λt0qM (δM ′,M+1q

2+n − δM ′,M−1q
2−n)

·
√

[n − j][n + j + 1]
[n][n + 1]

for j ≥ 0
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q=1.1,t0=1

Fig. 1. Admissible values of t versus those of r for q = 1.1 and
t0 = 1

Matrix elements of U :

〈j, m, n, M |U |j, m, n + 1, M〉 =

〈j, m, n + 1, M |U |j, m, n, M〉 =

1
[2]

√
[n − j + 1][n + j + 2]

[n + 1][n + 2]

Matrix elements of Λ:

〈j, m, n, M + 1|Λ 1
2 |j, m, n, M〉 = q2 (3.7)

4 Matrix elements of the coordinates

In this chapter we indicate how to construct the matrix
elements of the coordinates X.

We assume X0 and X◦X, as well as the elements T2

and τ (τ = τ3) to be diagonal and label the states with
the respective eigenvalues.

T2|j, m, r, t〉 = [j][j + 1]|j, m, r, t〉

τ |j, m, r, t〉 = q−4m|j, m, r, t〉

X0|j, m, r, t〉 = t|j, m, r, t〉

X◦X|j, m, r, t〉 = r2|j, m, r, t〉

(4.1)

The well known representations of the T algebra are given
in the appendix. As in the undeformed case, the T , XA

algebra allows us to express the “vector”-operator XA

through reduced matrix elements [7].
The respective algebra as it follows from Chap. 1 is:

τX3 = X3τ

τX+ = q−4X+τ (4.2)
τX− = q4X−τ

T−X3 = X3T− + q
√

1 + q2X−

T+X− = q2X−T+ + q−1
√

1 + q2X3 (4.3)
T−X− = q2X−T−

T+X3 = X3T+ + q−2
√

1 + q2X+

T+X+ = q−2X+T+ (4.4)

T−X+ = q−2X+T− +
√

1 + q2X3

We proceed exactly as in the undeformed case. From
(4.2) follows that X3 does not change the eigenvalue of τ
and that X+, (X−) changes m by +1, (−1).

From (4.4) we learn that the m dependence of the X+

matrix elements can be computed explicitly and that the
matrix elements of X3 can be expressed in terms of the re-
duced matrix elements of X+. From (4.3) follow the same
relations for X−. Via X3, the reduced matrix elements of
X+ are related to the reduced matrix elements of X−. As
XA commutes with X ◦X and X0, XA does not change
the eigenvalues of X0 and X◦X.

For the non-vanishing matrix elements we obtain the
following result:

〈j, m + 1, r, t|X+|j, m, r, t〉 =

−qm+2
√

[j + m + 1][j − m]〈j, r, t‖X−‖j, r, t〉
〈j + 1, m + 1, r, t|X+|j, m, r, t〉 =

qm−2j
√

[j + m + 1][j + m + 2]〈j + 1, r, t‖X−‖j, r, t〉
〈j − 1, m + 1, r, t|X+|j, m, r, t〉 =

qm+2j+2
√

[j − m][j − m − 1]〈j − 1, r, t‖X−‖j, r, t〉

〈j, m − 1, r, t|X−|j, m, r, t〉 =

qm
√

[j + m][j − m + 1]〈j, r, t‖X−‖j, r, t〉
〈j + 1, m − 1, r, t|X−|j, m, r, t〉 = (4.5)

qm
√

[j − m + 1][j − m + 2]〈j + 1, r, t‖X−‖j, r, t〉
〈j − 1, m − 1, r, t|X−|j, m, r, t〉 =

qm
√

[j + m][j + m − 1]〈j − 1, r, t‖X−‖j, r, t〉

〈j, m, r, t|X3|j, m, r, t〉 =

q
3
2

√
1 + q2

q2 − 1
{q2m − q2j+1 + q−2j−1

q + q−1 }〈j, r, t‖X−‖j, r, t〉
〈j + 1, m, r, t|X3|j, m, r, t〉 =

qm−j− 1
2
√

1 + q2
√

[j − m + 1][j + m + 1]
·〈j + 1, r, t‖X−‖j, r, t〉
〈j − 1, m, r, t|X3|j, m, r, t〉 =

−qm+j+ 1
2
√

1 + q2
√

[j − m][j + m]〈j − 1, r, t‖X−‖j, r, t〉
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All the m dependence of the XA matrix elements is
now explicitly known.

To get information on the reduced matrix elements we
have to use the X, X relations (2.1).

We start with the relation:

X3X+ − q2X+X3 = (1 − q2)X0X+ (4.6)

Depending on what matrix elements we take, (4.6) leads to
a recursion formula for 〈j, r, t‖X−‖j, r, t〉 or for the quan-
tity ρr,t which is defined as follows:

ρr,t(j + 1)
= [2j + 1][2j + 3] (4.7)

×〈j, r, t‖X−‖j + 1, r, t〉〈j + 1, r, t‖X−‖j, r, t〉

These recursion formulas can be solved and we obtain:

〈j, r, t‖X−‖j, r, t〉 = −λq−1
√

[2]
[j][j + 1]

[2j][2j + 2]
t (4.8)

As X− changes the eigenvalue of τ the above matrix ele-
ment has to be zero for j = 0. Equation (4.8) is valid for
j ≥ 1.

ρr,t(j + 1) = ρr,t(1) + λ2[2]q−2t2
j∑

l=1

[2l + 1]
{l}2{l + 1}2 (4.9)

The quantity ρr,t(1) is the unknown left. It is related to the
radius r. To see this we decompose X◦X into the product
of matrix elements of XA. The calculation is particularly
simple for the matrix element:

〈0, 0, r, t|X◦X|0, 0, r, t〉 = r2 = −q2[2]ρr,t(1) (4.10)

For j 6= 0 the same calculation, but more tedious, yields:

ρr,t(j + 1) =
1

q2[2]

{
−r2 +

[j][j + 2]λ2

{j + 1}2 t2
}

(4.11)

The two formulas (4.9) and (4.11) agree because the sum
in (4.9) can be summed up:

j∑
l=1

[2l + 1]
{l})2{l + 1}2 =

[2j]
[2]{j}2{j + 1}2 (1+

[2j + 2]
[2]

) (4.12)

Equation (4.12) can be proved by induction.
From (4.10) follows that ρr,t(1) is negative. We shall

show that this is true for ρr,t(j) for any value of j. It
follows from the hermiticity properties of the coordinates:

X3 = X3, X+ = −qX−, X− = −1
q
X+ (4.13)

For the reduced matrix elements this implies:

〈j, r, t‖X−‖j, r′, t′〉 = 〈j, r′, t′‖X−‖j, r, t〉 (4.14)

〈j + 1, r, t‖X−‖j, r′, t′〉 = −q2(j+1)〈j, r′, t′‖X−‖j + 1, r, t〉

From the definition of ρr,t (4.7) we now obtain:

ρr,t(j + 1) (4.15)

= −q−2(j+1)[2j + 1][2j + 3]|〈j + 1, r, t‖X−‖j, r, t〉|2

Thus ρr,t(j) is negative or zero. This can lead to an upper
bound for j.

If we combine (4.15) with (4.11) we see that
|〈j + 1, r, t‖X−‖j + 1, r, t〉|2 is now explicitly known as
a function of j, r and t. Only a phase is undetermined.
But the relative phase between states with different j
has not been fixed yet. We do it now, by assuming that
〈j + 1, r, t‖X−‖j, r, t〉 is real. Equation (4.14) then deter-
mines 〈j, r, t‖X−‖j + 1, r, t〉.

As the reduced matrix elements 〈j, r, t‖X−‖j, r, t〉 have
been given in (4.8), all the matrix elements of XA are
known as functions of j, m, r and t.

We have to learn more about the spectrum of t and r.
This can be done by studying the X, R algebra.

We start with the following relations, they are a con-
sequence of our algebra:

UX0 =
1
q

q4 + 1
q2 + 1

X0U − 1
q
(q2 − 1)2X◦R (4.16)

X◦R X0 =
2q

1 + q2 X0 X◦R − q

(1 + q2)2
X◦X U

If we take matrix elements of these relations we get two
homogeneous linear equations in the matrix elements of
U and X ◦R that have a non trivial solution only if the
determinant of the coefficient matrix vanishes:(

t − λ

[2]
t′
) (

t − {2}
[2]

t′
)

− λ2

[2]2
r′2 = 0 (4.17)

The invariant length commutes with X◦R and U , and, as
a consequence

s2 = t2 − r2 = s′2 = t′2 − r′2 = −l2 (4.18)

We shall use as a variable s2 for the time-like and l2 = −s2

for the space-like case.
If we replace r′2 in (4.17) by s2 we obtain a quadratic

equation in t that has the solution:

t =
[2]
2

t′ ± λ

2

√
t′2 −

(
2
[2]

)2

s2 (4.19)

Thus t and t′ have to be related this way for a non-
vanishing matrix element X◦R. For r′2 = 0 however there
is a special situation. From (4.11) follows that ρ0,t(1) = 0
and that j has to be zero for ρ0,t not to be positive. From
(4.15) all the X matrix elements are zero and thus the
X◦R matrix elements as well:

〈0, 0, 0, t′|X◦R|0, 0, r, t〉 = 0 (4.20)

The second equation of (4.16) is trivially satisfied leaving
us with the equation:

〈0, 0, 0, t′|U |0, 0, r, t〉
(

t − {2}
[2]

t′
)

= 0 (4.21)
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In this case the matrix element of U can only be different
from zero if

t =
{2}
[2]

t′ (4.22)

In all the other cases, the matrix element of U is related
to the matrix element of X◦R:

〈j, m, r′, t′|U |j, m, r, t〉
(

t − {2}
[2]

t′
)

= (4.23)

−qλ2〈j, m, r′, t′|X◦R|j, m, r, t〉

We shall now discuss the time-like, space-like and light-
like region separately.

Let us start with the time-like region s2 > 0. We as-
sume that there is a point r′ = 0 on the hyperbola, thus
t′0 = s (t′0 = −s).

According to the discussion above there is only the
matrix element of U that connects this state to the state
to the time:

t1 =
{2}
[2]

s > s (4.24)

We now continue to use (4.19) and find the other values
of t:

tn =
s

[2]
{n + 1} n = 0, 1, . . . ,∞ (4.25)

The values for rn follow from (4.18):

r2
n =

s2λ2

[2]2
[n + 2][n] (4.26)

For the backward light-cone we just have to take t0 nega-
tive.

If we would not have assumed r′ = 0 to be in the
spectrum our matrix elements would connect to negative
values of r2.

For the space-like region, s2 = −l2 < 0, a similar anal-
ysis gives the following values for t and r:

tn = ± lλ

[2]
[n] n = −∞ . . .∞ (4.27)

r2
n =

l2

[2]2
{n + 1}{n − 1}

On the light cone, s2 = 0:

tn = qnτ0 n = −∞ . . .∞ (4.28)
r2
n = q2nτ2

0

If we now go back to (4.11) and insert the values of rn

and tn we find that for the time-like region ρ(n + 1) = 0.
That means that in this case j is restricted to be j ≤ n.
There is no restriction of this type for the space-like region
of the light-cone.

To conclude this section we give an explicit form for ρ
for the time-like, space-like and light-like region. We find:

space-like: ρn(j + 1) = − l2

[2]q2
{n − j − 1}{n + j + 1}

{j + 1}2

time-like: ρn(j + 1) = − s2λ
[2]q2

[n − j − 1][n + j + 2]
{j + 1}2

light-like: ρn(j + 1) = − [2]τ2
0

q2
1

{j + 1}2

(4.29)
We see that only for the time-like region ρn can change
sign.

From (4.15) follows with our phase convention:

〈j + 1, r, t‖X−‖j, r, t〉 = qj+1

√
−ρr,t(j + 1)

[2j + 1][2j + 3]
(4.30)

〈j, r, t‖X−‖j + 1, r, t〉 = −q−j−1

√
−ρr,t(j + 1)

[2j + 1][2j + 3]

We already know 〈j, r, t‖X−‖j, r, t〉 (4.8). Then all the ma-
trix elements of X depend on s for the time-like, on l for
the space-like and on τ0 for the light-like region as the
only undetermined variable.

5 Matrix elements of the generators RA

of the q-Lorentz algebra

The operators RA are “vector” operators as well, and their
matrix elements can be expressed through reduced matrix
elements. The formulas (4.5) are valid for RA except that
RA is not diagonal in r and t.

If we analyze the “scalar” product of two arbitrary
“vector” operators through matrix elements we get the
general formula:

〈j, m, µ|A◦B|j, m, ν〉 =∑
ν′

〈j, µ‖A−‖j, ν′〉〈j, ν′‖B−‖j, ν〉 1
[2]

q2[2j + 2][2j] (5.1)

−〈j, µ‖A−‖j + 1, ν′〉〈j + 1, ν′‖B−‖j, ν〉q2[2j + 2][2j + 3]
−〈j, µ‖A−‖j − 1, ν′〉〈j − 1, ν′‖B−‖j, ν〉q2[2j][2j − 1]

where ν, µ stand for the quantum numbers t and r.
We can apply (5.1) to X◦R and find:

〈j, m, µ|X◦R|j, m, ν〉 =

〈j, µ‖X−‖j, µ〉〈j, µ‖R−‖j, ν〉 1
[2]

q2[2j + 2][2j] (5.2)

−〈j, µ‖X−‖j + 1, µ〉〈j + 1, µ‖R−‖j, ν〉q2[2j + 2][2j + 3]
−〈j, µ‖X−‖j − 1, µ〉〈j − 1, µ‖R−‖j, ν〉q2[2j][2j − 1]

This shows that in general (rµ 6= 0) non vanishing matrix
elements of RA will lead to non vanishing matrix elements
of X◦R. We know from the last section that X◦R has only
non vanishing matrix elements between states labeled by
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tn and tn±1. Thus the non vanishing matrix elements for
RA are between these states as well.

We now use the R,X relations to get information on
the R matrix elements. First the algebraic relation:

R+X+ = qX+R+ (5.3)

If we take the (j + 2, j) matrix elements of this equation
we obtain the recursion formulas:

〈j + 2, r′, t′‖R−‖j + 1, r, t〉
〈j + 1, r′, t′‖R−‖j, r, t〉 = (5.4)

q
〈j + 2, r′, t′‖X−‖j + 1, r′, t′〉

〈j + 1, r, t‖X−‖j, r, t〉
and:

〈j − 2, r′, t′, ‖R−‖j − 1, r, t〉
〈j − 1, r′, t′‖R−‖j, r, t〉 = (5.5)

q
〈j − 2, r′, t′‖X−‖j − 1, r′, t′〉

〈j − 1, r, t‖X−‖j, r, t〉
These formulas can be iterated. With the matrix elements
of X− expressed in terms of ρ, we find for j > 1:

〈j + 1, r′, t′‖R−‖j, r, t〉
〈1, r′, t′‖R−‖0, r, t〉 (5.6)

= q2j

√
[3]

[2j + 1][2j + 3]

√
ρr′,t′(j + 1) . . . ρr′,t′(2)

ρr,t(j) . . . ρr,t(1)

and

〈j, r′, t′‖R−‖j + 1, r, t〉
〈0,r′,t′‖R−‖1,r,t〉 =

q−2j

√
[3]

[2j + 1][2j + 3]

√
ρr,t(j + 1) . . . ρr,t(2)
ρr′,t′(j) . . . ρr′,t′(1)

There is another relation that follows from (5.3) if we take
the (j + 1, j) matrix elements. It is:

〈j + 1, r′, t′‖R−‖j + 1, r, t〉〈j + 1, r, t‖X−‖j, r, t〉
+〈j + 1, r′, t′‖R−‖j, r, t〉〈j, r, t‖X−‖j, r, t〉 = (5.7)

q〈j + 1, r′, t′‖X−‖j + 1, r′, t′〉〈j + 1, r′, t′‖R−‖j, r, t〉
+q〈j + 1, r′, t′‖X−‖j, r′, t′〉〈j, r′, t′‖R−‖j, r, t〉

This equation is valid for j ≥ 1 and relates (j + 1, j +
1),(j, j) and (j + 1, j) matrix elements of R−.

If we study the relation:

R+(X3 − X0) =
1
q
(X3 − X0)R+ (5.8)

and its (j + 1, j) matrix elements, the same R− matrix
elements as (5.7) are related. They can be combined to
eliminate the (j + 1, j + 1) matrix elements and to give a
relation between the (j, j) and (j + 1, j) matrix elements
of R−:

〈j, r′, t′‖R−‖j, r, t〉〈j + 1, r′, t′‖X−‖j, r′, t′〉qj+2 (5.9)

= 〈j + 1, r′, t′‖R−‖j, r, t〉√[2]
(

t′{j} − t{j + 1}
{j}{j + 1}

)

It is valid for j ≥ 1.
Taking the corresponding (j−1, j) matrix elements we

obtain:

〈j, r′, t′‖R−‖j, r, t〉〈j − 1, r′, t′‖X−‖j, r′, t′〉 (5.10)

= 〈j − 1, r′, t′‖R−‖j, r, t〉√[2]
(

t′{j + 1} − t{j}
{j}{j + 1}

)
qj−1

This equation is valid for j > 1.
Both equations can be used to find the (j, j) matrix

elements from (5.6) in terms of the (1, 0) or (0, 1) matrix
elements of R−.

〈j, r′, t′‖R−‖j, r, t〉

= 〈1, r′, t′‖R−‖0, r, t〉1
r

t′{j} − t{j + 1}
{j}{j + 1}

[2]
√

[3]
q2

·
√

ρr′,t′(j) . . . ρr′,t′(2)
ρr,t(j) . . . ρr,t(2)

(5.11)

= −〈0, r′, t′‖R−‖1, r, t〉 1
r′

t′{j + 1} − t{j}
{j}{j + 1} q2[2]

√
[3]

·
√

ρr,t(j) . . . ρr,t(2)
ρr′,t′(j) . . . ρr′,t′(2)

For the values of ρ given in (4.11) it can be seen by in-
duction in j that the relation between 〈1, r′, t′‖R−‖0, r, t〉
and 〈0, r′, t′‖R−‖1, r, t〉 that follows from (5.11) is indeed
independent of j. We take j = 2 and obtain:

〈1, r′, t′‖R−‖0, r, t〉 = (5.12)

〈0, r′, t′‖R−‖1, r, t〉(−q4)
r

r′
t′{3} − t{2}
t′{2} − t{3}

ρr,t(2)
ρr′,t′(2)

One of the matrix elements, e.g. 〈1, r′, t′‖R−‖0, r, t〉, re-
mains to be determined.

We already know that the U matrix elements are re-
lated to the R− matrix elements from (4.23) and that U
is hermitean.

〈0, 0, t, r|U |0, 0, t′, r′〉 = 〈0, 0, t′, r′|U |0, 0, t, r〉 (5.13)

If we now use the relation:

UR+ = R+U (5.14)

we find:

Γ (n) = |〈0, 0, tn, rn|U |0, 0, tn+1, rn+1〉|2 = Γ (n + 1)
(5.15)

Thus Γ (n) is n independent. This is valid for the time-like,
space-like and light-like regions.

To finally determine Γ (n) we have to use a relation
that fixes the length of R◦R. This relation is:

U2 − 1 = (q4 − 1)2R◦R (5.16)

This is now sufficient to determine Γ (n). We find:

Γ (n) =
1

[2]2
(5.17)
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We can use the freedom of choosing the phase of states
with different n eigenvalues such that:

〈0, 0, r, t|U |0, 0, r′, t′〉 =
1
[2]

(5.18)

This determines all the matrix elements of U , RA and
SA, as the SA matrix elements are conjugate to the RA

matrix elements (2.11).
We finally give the explicit form of the following R−

matrix elements:
For s2 = 0

〈1, rn, tn‖R−‖0, rn−1, tn−1〉 = 1
[2]

5
2
√

[3]λ

〈1, rn, tn‖R−‖0, rn+1, tn+1〉 = − 1
q2

1
[2]

5
2
√

[3]λ

〈0, rn, tn‖R−‖1, rn−1, tn−1〉 = − 1
[2]

5
2
√

[3]q6λ

〈0, rn, tn‖R−‖1, rn+1, tn+1〉 = 1
[2]

5
2
√

[3]q4λ

(5.19)

For s2 time-like

〈1, rn, tn‖R−‖0, rn−1, tn−1〉 = 1
[2]

5
2
√

[3]qλ

√
[n+2]
[n]

〈1, rn, tn‖R−‖0, rn+1, tn+1〉 = − 1
[2]

5
2
√

[3]qλ

√
[n]

[n+2]

〈0, rn, tn‖R−‖1, rn−1, tn−1〉 = − 1
[2]

5
2
√

[3]q5λ

√
[n−1]
[n+1]

〈0, rn, tn‖R−‖1, rn+1, tn+1〉 = 1
[2]

5
2
√

[3]q5λ

√
[n+3]
[n+1]

(5.20)
For s2 space-like

〈1, rn, tn‖R−‖0, rn−1, tn−1〉 = 1
[2]

5
2
√

[3]qλ

√
{n+1}
{n−1}

〈1, rn, tn‖R−‖0, rn+1, tn+1〉 = − 1
[2]

5
2
√

[3]qλ

√
{n−1}
{n+1}

〈0, rn, tn‖R−‖1, rn−1, tn−1〉 = − 1
[2]

5
2
√

[3]q5λ

√
{n−2}

{n}

〈0, rn, tn‖R−‖1, rn+1, tn+1〉 = 1
[2]

5
2
√

[3]q5λ

√
{n+2}

{n}
(5.21)

We could have started from the momenta instead of the
coordinates, then we would have constructed representa-
tions of the q-deformed Poincaré algebra. Such represen-
tations are obtained by replacing Xa everywhere with P a

[8].
It should be noted that the representations with pos-

itive mass square p02 − p2 > 0, have angular momentum
limited by j ≤ n (see discussion after the (4.23)).

6 The scaling operator Λ and the spectrum
of X0, X◦X

The action of the scaling operator Λ
1
2 on the states

|j, m, r, t〉 is easily found from (2.7):

Λ
1
2 |j, m, r, t〉 = αj,m,r,t|j, m, qr, qt〉 (6.1)

From (2.11) and (6.1) follows:

|αj,m,r,t|2 = q4 (6.2)

It is obvious that Λ
1
2 changes the value of s2 by a factor

q2. This shows that the values of s and l in (4.25), (4.26)
and (4.27) have to take the following values:

s = t0q
M , M = −∞ . . .∞ (6.3)

l = l0q
M

It is only the light-cone that is left invariant under the
action of Λ

1
2

The states can be labeled with j, m, n and M for
s2 > 0 and for s2 < 0. For s2 = 0, j, m and n are sufficient.

For s2 > 0:

M = −∞ . . .∞
n = 0 . . .∞
j = 0 . . . n

X0 |j, m, n, M〉 =
t0q

M

[2]
{n + 1} |j, m, n, M〉 (6.4)

X◦X |j, m, n, M〉 =
t20q

2Mλ2

[2]2
[n + 2][n] |j, m, n, M〉

Λ
1
2 |j, m, n, M〉 = q2|j, m, n, M + 1〉

For s2 < 0:

M = −∞ . . .∞
n = −∞ . . .∞

j = 0 . . .∞

X0 |j, m, n, M〉 =
l0q

M

[2]
λ[n] |j, m, n, M〉 (6.5)

X◦X |j, m, n, M〉 =
l20q

2M

[2]2
{n + 1}{n − 1} |j, m, n, M〉

Λ
1
2 |j, m, n, M〉 = q2|j, m, m, n, M + 1〉

For s2 = 0:

n = −∞ . . .∞
j = 0 . . .∞

X0 |j, m, n〉 = τ0q
n |j, m, n〉 (6.6)

X◦X |j, m, n〉 = τ2
0 q2n |j, m, n〉

Λ
1
2 |j, m, n〉 = eiαnq2|j, m, m, n + 1〉

In this case we cannot use the freedom of phase for the
states to have α = 0.

As we shall need the U -matrix elements in the next
section we list them here explicitly.
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For s2 < 0:

〈j, m, n, M |U |j, m, n + 1, M〉 =
〈j, m, n + 1, M |U |j, m, n, M〉 = (6.7)

1
[2]

√
{n − j}{n + j + 1}

{n}{n + 1}

For s2 > 0:

〈j, m, n, M |U |j, m, n + 1, M〉 =
〈j, m, n + 1, M |U |j, m, n, M〉 = (6.8)

1
[2]

√
[n − j + 1][n + j + 2]

[n + 1][n + 2]

We see that for the time-like region the matrix element
of U is zero for n = j − 1. This is in agreement with the
condition n ≥ j.

For s2 = 0:

〈j, m, n|U |j, m, n + 1〉
= 〈j, m, n + 1, M |U |j, m, n, M〉 =

1
[2]

(6.9)

We shall see that for s2 6= 0 these states are sufficient
to construct a representation of the full algebra introduced
in Chap. 1. For s2 = 0 there is no representation of this
algebra.

7 Matrix elements of the momenta

We first write the q-deformed Heisenberg relations (2.8)
in a more explicit version:

q2[2]P 0X0 − q{2}X0P 0 + λX◦P

=
i

2
[2]{2}q4Λ− 1

2 U (7.1)

q2[2]P 0XA − q{2}XAP 0 − λq2X0PA − λεDC
AXCPD

= − i

2
[2]2q6λΛ− 1

2 (q2RA + SA) (7.2)

q2[2]PAX0 − q{2}X0PA − λq2XAP 0 − λεDC
AXCPD

=
i

2
[2]2q6λΛ− 1

2 (RA + q2SA) (7.3)

[2](PAXB − XAPB) +
2
q3 εDC

EεE
ABXCPD

+
λ

q2

(
gABX◦P − gABX0P 0 + εC

AB(XCP 0 + X0PC)
)

= − i

2
[2]q2Λ− 1

2

× ({2}gABU − q2λ[2]εC
AB(RC − SC)

)
(7.4)

All these relations contain P 0, in the relations (7.3)
and (7.4) P 0 is multiplied by λ.

We rearrange these relations to obtain two relations
containing P 0 and X◦P as the only unknowns.

First we contract (7.4) with gAB :

P ◦X − 1
q3

{2}
[2] X◦P − q4λ [3]

[2]X
0P 0 (7.5)

= − i
2q2[2][3]Λ− 1

2 U

Equation (7.1) and (7.5) together with their conjugates
yield three independent equations:

P 0X0 − X0P 0=
i

2
(q4Λ− 1

2 + Λ
1
2 )U (7.6)

P ◦X − X◦P=− i

2
[3](q4Λ− 1

2 + Λ
1
2 )U (7.7)

λ(X◦P − X0P 0)=
i

2
q2[2](Λ

1
2 − Λ− 1

2 )U (7.8)

Equation (7.7) can be used to express P◦X in terms of
X◦P . Equation (7.8) is one of the wanted equations, the
second one is obtained by multiplying (7.3) by XBgBA:

X◦PX0 − 2
q[2]

X0X◦P − λ

[2]
X◦XP 0

= iq4λ[2]X◦RΛ− 1
2 (7.9)

This provides us with a system of two linear equations
for the two unknowns, the matrix elements of P 0 and X◦P .
The determinant of this system of linear equations is pro-
portional to [2]t′(t − t′) + λs2. For s2 6= 0 the equations
can be solved. For s2 = 0 and t = t′ the determinant
vanishes. The homogeneous part of the two equations be-
comes linear dependent. For the inhomogeneous part this
would imply 〈j, m, n|U |j, m, n+1〉 = 0, in clear contradic-
tion to (6.9). We conclude that the s2 = 0 representation
of the Xa, RA, SA, U , Λ algebra cannot be extended to
a representation of the full algebra. For s2 6= 0 we can
calculate the matrix elements. They are consistent with
(7.6) and the other algebra relations.

From the X◦P matrix elements we obtain the reduced
matrix elements of P−, hermiticity of P has to be used.
This way we obtain all the matrix elements of PA. Repre-
sentations of the full algebra have now been constructed.
Their explicit form is given in Chap. 2. It is interesting
that the forward, backward time-like and the space-like
regions provide inequivalent, irreducible representations
by themselves.

Appendix A R-matrices, metric
and ε-tensor

Euclidean space

For the Euclidean space the metric tensor is defined as:

gAB : g+− = −q, g33 = 1, g−+ = −1
q

(A.1)

gAB : g+− = −q, g33 = 1, g−+ = −1
q

gABgBC = δC
A = gCBgBA
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With the metric indices can be raised and lowered:

XA = gABXB , XA = gABXB

and an invariant scalar product can be given:

X ◦Y = gABXAY B = X3Y 3−qX+Y − − 1
q
X−Y + (A.2)

The ε-tensor is defined as:

ε+−3=q, ε−+
3 = −q, ε33

3 = 1 − q2,

ε+3
+=1, ε3+

+ = −q2,

ε−3
−=−q2, ε3−− = 1. (A.3)

Indices of the ε-tensor can also be raised and lowered
through the metric, e.g.:

εABC = gCDεAB
D

In terms of the metric and of the ε-tensor the three-
dimensional R̂-matrix of the q-Euclidean space can be
written in the form:

R̂AB
CD=δA

CδB
D

−q−4εFABεFDC − q−4(q2 − 1)gABgCD (A.4)

Minkowski space

For the q-deformed Minkowski space it turns out that two
different R-matrices exist. Their projector decomposition
is given by:

R̂I=PS + PT − q2P+ − q−2P− (A.5)

=1I − (1 + q2)P+ − (1 +
1
q2 )P−

R̂II=q−2PS + q2PT − P+ − P− (A.6)

=
1
q2 1I + (q2 − 1

q2 )PT − (1 +
1
q2 )PA

In these definitions PS ,PT ,P+,P− are the projectors on
the symmetric, trace, selfdual, antiselfdual eigenspaces re-
spectively. This decomposition shows clearly that R̂I can-
not distinguish the symmetric while R̂II cannot distin-
guish the antisymmetric eigenspaces, because they have
the same eigenvalue, so that both matrices are necessary
to distinguish all the spaces. The explicit expression of the
projectors follows.

P+:

00 C0 0D CD

00 0 0 0 0

A0 0 q2

(1+q2)2 δA
C − 1

(1+q2)2 δA
D

1
(1+q2)2 εDC

A

0B 0 − q4

(1+q2)2 δB
C

q2

(1+q2)2 δB
D − q2

(1+q2)2 εDC
B

AB 0 q2εC
AB

(1+q2)2 − εD
AB

(1+q2)2
εDC

EεE
AB

(1+q2)2

(A.7)

P−:

00 C0 0D CD

00 0 0 0 0

A0 0 q2

(1+q2)2 δA
C − q4

(1+q2)2 δA
D− q2

(1+q2)2 εDC
A

0B 0 − 1
(1+q2)2 δB

C
q2

(1+q2)2 δB
D

1
(1+q2)2 εDC

B

AB 0 − εC
AB

(1+q2)2
q2εD

AB

(1+q2)2
εDC

EεE
AB

(1+q2)2

(A.8)

PT :

00 C0 0D CD

00 q2

(1+q2)2 0 0 − q2

(1+q2)2 gCD

A0 0 0 0 0

0B 0 0 0 0

AB − q2

(1+q2)2 gAB 0 0 q2

(1+q2)2 gABgCD

(A.9)

It holds:
1I = PS + PT + P+ + P− (A.10)

Using PT it is possible to construct a 4-dimensional met-
ric:

η00 = −1, η33 = 1
η+− = −q, η−+ = − 1

q

ηab = ηab

(A.11)

which enables to raise and lower indices:

XA = ηABXB , XA = ηABXB (A.12)

and to define an invariant scalar product in 4 dimensions:

X · Y =X0Y 0 − X3Y 3 + qX+Y − +
1
q
X−Y +(A.13)

=−ηabX
aY b

The sum of the selfdual and antiselfdual projectors defines
the q-deformed antisymmetrizer:

PA = P+ + P− (A.14)

while their difference defines the q-deformed 4-dimensional
ε-tensor:

εab
cd = P ab

+ cd − P ab
− cd (A.15)
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Deformed Poincaré Algebra, Commun. Math. Phys. 150:
495–518, 1992


